たにちゅーの思惑|谷口忠大Home Page(たにちゅー・どっと・こむ)

2019 年 12 月
« 1 月    
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

新着記事

最近のコメント

HOME > たにちゅーの思惑 >  研究 > A Bayesian Nonparametric Approach to Image Super-resolution

A Bayesian Nonparametric Approach to Image Super-resolution

2012-12-28 (fri)|カテゴリー:

arxivからの論文

http://arxiv.org/pdf/1209.5019.pdf

A Bayesian Nonparametric Approach to Image
Super-resolution

Gungor Polatkan, Mingyuan Zhou, Lawrence Carin, David Blei, and Ingrid
Daubechies

 

ノンパラメトリックベイズでは有名な Bleiのグループとの共同研究といった感じでしょうか?

超解像技術(super-resolution)は低解像度画像から高解像度画像を作る技術.

全画素の組み合わせに対して,実際に観測される組み合わせは非常にスパースであることから,

パッチを組み合わせることで,高解像度画像を低解像度画像から復元することができます.

そのためには,辞書(Dictionary)を持つ必要があるのですが,

それをどのように作るかが問題となります.

 

筆者らは過去に

NIPSで

Non-Parametric Bayesian Dictionary Learning for
Sparse Image Representations

http://books.nips.cc/papers/files/nips22/NIPS2009_0190.pdf

を発表しており,ノンパラメトリックベイズを用いて,Dictionary Learning にノンパラメトリックベイズを

応用するということをやっています.

 

それをsuper resolutionに応用するというのが主な筋立てです.

 

基本的にスパースな表現を得る場合には,L1ノルムを用いて刈り込む事が多くて,

超解像でもこれがよく用いられます.

Image Super-Resolution via Sparse Representation
Jianchao Yang et al.

などが良くリファレンスされるらしいです.

 

これに対して,ノンパラメトリックベイズ業界(?)ではスパースな表現にする,

つまり用いない次元を作るような場合には,ベータ・ベルヌーイ分布を導入し,スイッチを作るのが定石です.

 

例えば,

Sharing Features among Dynamical Systems
with Beta Processes

Emily B. Fox et al.

http://videolectures.net/nips09_fox_sfa/

では,HDP-HMM の各隠れ状態に対してストリーム毎にベータ・ベルヌーイのスイッチを設けて,使わない隠れ状態をオフにします.

ちなみに, @k_ishiguro  さんの,

Subset Infinite Relational Models
Katsuhiko Ishiguro et al.

でも,ベータ・ベルヌーイのスイッチをつくって,汎用的な出力分布を用いる(IRMの外に吐き出してしまう)か,

通常のIRMの側に入れるかをえらぶようにしていたりします.

 

というわけで,

「L1刈り込みの代わりを,ノンパラベイズでやるなら,やっぱベータ・ベルヌーイっしょ!」

という,結構ストレートフォワードな適用があるわけです.

 

image

グラフィカルモデルはこんな感じ.

l と h はlow resolution と high resolutionを表している.

xl と xh が観測.

Di と Dh が辞書.

で si が係数なんですが,

zi がいわゆるベータ・ベルヌーイのスイッチで,0,1 をとる.

これによって,使う基底,使わない基底が,0,1でオン・オフされることで,

スパース表現を得るわけである.

なんとも,ストレートフォワードな論理である.

 

ちなみに,これだけでは綺麗にならないみたいで,最後に平滑化処理っぽいことをやる.

image

 

実験の結果は

image

こんなかんじなのだが,正直,よくわからない・・・.

 

どうも既存手法に勝てているか微妙なのだが,

なるほどな,とおもったのは, Fig.8 で

image

こんな図がある.

これは,辞書の要素数(もとの次元数)を大きくしていった際,BPの場合は打ち切り最大数を大きくしていった時にどうなるか

を示しているのだと思うが,

その時に,ScSR(L1ノルムでのスパースコーディング)はピークを持ってしまう.

これに対しノンパラメトリックベイズのアプローチでは,十分な 要素数があれば,良い値を推定できるので,その良さが維持される.

 

これは,BPのアプローチがもともと無限の状態数を前提として組まれているのに対して,

L1の正則化項は 無次元量でもなく,要素数に影響を受けてしまうからだろう.

 

なるほどねー.

とは思うが,計算量とか考えても,実用的にはL1で行ったほうが,楽で実用的なのかなぁ,と思った次第でございます.

 

本内容は,

Xian-Hua Han (韓 先花) Ph.D にご紹介いただいて (Thank you very much

http://www.iipl.is.ritsumei.ac.jp/XHHan/index.html

それを,僕が勝手に理解したものを書いたものであり,

この記事の内容に誤りがあった場合は,僕を責めてくださいませ.

COMMENTS コメント

  1. Heathertal 2019-08-31 (sta)

    forexoptions.website
    trade-forex-online.website
    forexalerts.website
    liveforexcharts.website
    forex-online.website
    is offering highly technological and professional service. By choosing Forex4you as your personal broker you are receiving most affordable market entry with No Dealing Desk Market Execution technology by means of BBO.

    You are provided with a wide range of accounts with constantly increasing number of trading tools. You can choose the most suitable trading conditions according to your level of experience: „Cent” for Forex beginners, „Cent NDD” to get order execution on the Counter-agent side; „Classic” for experienced traders who knows how to deal with trading risks; „Pro” for true Forex professional traders.


    1 300 000 Opened accounts
    710 000 000 Total orders executed
    1300+ Successful leaders
    857 000 Open orders

コメントの投稿




*


下記のタグが使用できます。
<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong> <img localsrc="" alt=""> <pre lang="" line="" escaped="">

インフォメーション



tanichuの著作

copyright © Tadahiro Taniguchi All Right Reserved.