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Abstract— We propose an unsupervised double articulation
analyzer for human motion data. Double articulation is a two-
layered hierarchical structure underlying in natural language,
human motion and other natural data produced by human.
A double articulation analyzer estimates the hidden structure
of observed data by segmenting and chunking target data.
We develop a double articulation analyzer by using a sticky
hierarchical Dirichlet process HMM (sticky HDP-HMM), a
nonparametric Bayesian model, and an unsupervised morpho-
logical analysis based on nested Pitman-Yor language model
which can chunk given documents without any dictionaries. We
conducted an experiment to evaluate this method. The proposed
method could extract unit motions from unsegmented human
motion data by analyzing hidden double articulation structure.

I. INTRODUCTION

A. Motion Segmentation for imitation learning

In the context of imitation learning in robotics, ‘when to
imitate’ is an important problem to be solved[1]. When a
robot tries to imitate a person’s behaviors, the learner (robot)
has to decide what segment of behavior to imitate from
the demonstrator (human). For example, suppose a person
approaches a robot and performs several motions (e.g.,
raising his/her hands, nodding several times, turning around
and waving good-bye, and leaving). The displayed motion
is unsegmented. The learner (robot) does not know which
segment is worth to imitate. Therefore, it is important that
the learner segments the demonstrated behavior and extracts
unit motions from the exhibited continuous motion. Motion
segmentation method has been intensively studied by many
researchers[2], [3], [4], [5], [6], [7], [8]. The segmentation
methods can be categorized into four classes[9]. The first
and most classical type of these methods segments a target
time series by focusing on local features in continuous
motion time series data[2]. The second type focuses on local
dynamics and the predictability of motion data[3], [4], [5].
The third type uses more complex nonlinear predictors that
also use short-term context information[6]. The fourth type
finds repeated segments from a continuous time series[7],
[8]. Roughly speaking, The first and second method tends
to segment a target motion data into too fine short-term
motion sequences. The third and fourth method tends to
extract long-term motion sequences which can be regarded
as a meaningful segment by human observer from a target
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motion data. Taniguchi pointed out that each approach has
each problem in [9]. It is important to distinguish the short-
term segment and long-term segment. To distinguish the two
types of segments explicitly in a learning model, a structure
of double articulation should be taken into consideration.

B. Double Articulation

In the context of motion segmentation, Barbic distin-
guished betweenhigh-level behaviorand low-level behavior
[3]. Low-level behavior is a simple short motion segment
which can be modeled by linear dynamics in contrast that
Barbic and we are interested in semantically meaningful
segment. Barbic call such semantically meaningful segments
high-level behavior, such as walking, running, sitting, throw-
ing a ball, and swinging a stick. A high-level behavior is
more complex than a low-level behavior. The third and fourth
types of methods discussed in the previous subsection can
extract higher-level behaviors better than the first and second
types.

In this paper, we propose a method for extracting high-
level behavior by connecting several low-level behaviors
by analyzing hidden double articulation structure of human
motion. The method is based on the concept of double
articulation, which is well known in semiotics.

Fig. 1 shows the basic concept of double articulation in
our unsupervised double articulation analyzer. We, humans,
have a double articulation structure in our spoken language
and other many semiotic data. Most theories of speech
recognition have following assumptions. First, a spoken
auditory signal is segmented into phonemes (letters). Second,
the phonemes are chunked into words. In most cases, we
do not give any meanings to phonemes, but give certain
meanings to words. We assume that human motion also has
double articulation structure. This is our basic assumption
of our proposed motion segmentation method. We assume
that unsegmented motion is segmented to low-level behaviors
based on its linearity or its locality of distribution in its state
space. We call low-level behaviorelemental motionin this
paper. Elemental motions are chunked into aunit motion,
which corresponds to a word in spoken language. We propose
unsupervised motion segmentation method which analyzes
double articulation structure in observed unsegmented data
and extracts unit motions. We describe the algorithm of
the double articulation analyzer based on nonparametric
Bayesian theory.
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Fig. 1. Assumption of double articulation in motion segmentation

II. A LGORITHM

A. Overview

We give an overview of our proposed double articula-
tion analyzer in this subsection. Fig. 2 shows a schematic
overview of the overall learning architecture.

First, a large amount of high-dimensional motion data
are observed by a robot and recorded. Singular value de-
composition or other method reduces their dimensionality
as preprocess. This reduces successive computational costs
and extracts low-dimensional features, which mainly relate
to unit motions embedded in unsegmented motions.

A sticky hierarchical Dirichlet process HMM (sticky HDP-
HMM) [10] is used to segment and model the target prepro-
cessed unsegmented human motion data. By using a sticky
HDP-HMM, a robot can obtain elemental motions and se-
quences of labels of hidden states without fixing the number
of types of elemental motions. We call a sequence of labels
of hidden states that corresponds to observed unsegmented
motion data adocument(see Fig. 3). After obtaining a
document, it is chunked into a sequence of words (sequence
of letters). Taniguchi et al. used chunking method based
on minimal description length (MDL) principle to solve the
same problem. However, this method requires much compu-
tational time. In addition, the chunking method is heuristic
probabilistic model, not a pure generative model. Mochihashi
proposed an unsupervised morphological analysis method
based on nested Pitman-Yor language model. Nested Pitman-
Yor language model (NPYLM) is a nonparametric Bayesian
language model[11]. That has two hierarchical Pitman-Yor
(HPY) process. One is a language model which is an N-
gram model of words and the other is a word model which
is an N-gram model of letters. The language model is named
NPYLM because an HPY word model is nested by an HPY
language model. The language model enables unsupervised
morphological analysis, unsupervised chunking of letters in
other words. In this paper, we proposed to use NPYLM to
chunk elemental motions to unit motions.
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Fig. 2. Overview of proposed imitation learning architecture

B. Infinite Hidden Markov Model

The infinite hidden Markov model (iHMM), proposed by
Beal [12], is a first nonparametric Bayesian statistical model
which can be substituted for an HMM. HMM’s selection
probability of hidden states is temporally related in a Marko-
vian manner. A potentially infinite number of hidden states
are assumed with the iHMM. Through its inference process,
the iHMM can flexibly estimate the number of hidden states.
In a conventional HMM, the number of hidden states is fixed.
The iHMM is a flexible statistical model whose number of
hidden states is determined adaptively depending on given
training data. However, it did not have an adequate generative
model and an efficient inference algorithm.

The [13] extends the HDPM into the hierarchical Dirichlet
process-hidden Markov model (HDP-HMM), which is an
adequate generative model for iHMM. In the HDP-HMM,
the SBPs GEM(γ) having the concentration parameterγ
producesβ , which producesπk for all hidden states.πk is a
multinomial distribution corresponding to each hidden state.
In a generative process, the next state is selected using a
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Fig. 3. (Left) sequence of hidden states is transformed into document.
(Right) separator vector determines segmentation of given document.

multinomial distribution corresponding to the hidden states.
This corresponds to transition matrix in classical HMM. This
means that the HDP-HMM has transition matrices having
potentially infinite dimensions.However, the HDP-HMM has
a problem that hidden states transit to other hidden states too
frequently. This comes from the fact thatπk does not have
any self transition bias. In contrast, a hidden state is expected
to be sustained for a certain number of time steps from
practical use of HMMs in continuous dynamical systems,
e.g., modeling and segmenting, spoken language, human
motion, and data from sensory networks. To overcome this
problem, stick HDP-HMM was proposed.

C. sticky HDP-HMM

Fox et al. [10] proposed a sticky HDP-HMM with a self-
transition bias [10]. This model is an extension of the HDP-
HMM. By biasing the self transition probability, this sticky
HDP-HMM can reduce the frequency of transition among
hidden states. Therefore, this model is more effectively
used to model and segment a continuous observed real
data stream, e.g., speaker diarization and speech recognition.
If the segmentation process, outputting elemental motions,
produces too many fragments, i.e., too many state transitions,
the posterior word extraction process does not work well and
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Fig. 4. Graphical model of sticky HDP-HMM

cannot extract unit motions. For our purpose, the stickiness
the sticky HDP-HMM provides is important. A graphical
model of sticky HDP-HMM is shown in Fig.4.

Fox et al. also describes a numerical computation algo-
rithm using a blocked Gibbs sampler. Straight-forward appli-
cation of the forward filtering-backward sampling algorithm
for an HMM [14] to the iHMM is not feasible because it is
impossible to accumulate forward messages for an infinite
number of hidden states. Therefore, halting an SBP and
truncating the number of hidden states are unavoidable. Fox
et al. proposed a blocked Gibbs sampler by adopting weak-
limit approximation. This accelerates the inference sampling
process in the HDP-HMM. Practically, the approximation
is not so problematic for the purpose of motion learning.
Therefore, we adopted the blocked Gibbs sampler proposed
by Fox et al. [10]. The precise formulation, derivation, and
discussion of the sticky HDP-HMM and its blocked Gibbs
sampler is omitted in this paper1. In this paper, we use the
weak-limit approximation by Fox et al. for practical use.

D. Nested Pitman-Yor Language Model

We assume that a unit motion consists of a chunk of
elemental motions. This corresponds to the relationship
between a spoken word and phonemes. Taniguchi et al.
[15], [16] proposed an imitation learning architecture that
enables a robot to extract characteristic unit motions from
unsegmented hand movement by using heuristic keyword
extraction method. However, this keyword extraction method
highly depends on several hand-coded parameters and initial
conditions. In contrast, Tanaka et al. and Taniguchi et al.
developed a motion segmentation method [17] based on the
MDL principle. However, that requires high computational
cost.

To chunk sequential letters into several words corresponds
to morphological analysis in linguistics. Several researchers
have already proposed unsupervised morphological analysis
methods for segmenting documents by using nonparametric
Bayesian language models [11], [18]. In the field of motion
segmentation, unit motions are usually unknown in contrast
with words in spoken language recognition. Therefore, when
we analyze unsegmented motion data the analyzer has to

1For more information, see Fox et al.’s research [10].



treat with unknown words (sequence of letters corresponding
to hidden states in HMM). Unsupervised morphological
analysis does not assume preexisting dictionary. Therefore,
it is suitable for motion analysis. Mochihashi [11] proposed
an unsupervised morphological analysis method based on
Nested Pitman-Yor language model (NPYLM). It uses letter
N-gram in addition to word N-gram model. The both of them
use Pitman-Yor process to smooth their probability. Mochi-
hashi uses NPYLM and probabilistic dynamic programming
to chunk sentences written in natural language.

1) Pitman-Yor process:HPYLM is an N-gram language
model using hierarchical Pitman-Yor process. Pitman-Yor
process is a stochastic process whose base measure is itself
Pitman-Yor process which is a generalization of Dirichlet
process.

In HPYLM, probability of word w after a contexth =
wt−n . . .wt−1 is calculated as follows.

p(w|h) = c(w|h)−d · thw

θ +c(h)
+

θ +d · th
θ +c(h)

p(w|h′) (1)

h′ is a context whose order is one less thanh, i.e.,
h′ = wt−n−1 . . .wt−1. Therefore, p(w|h′) becomes a prior
probability of w after h, and their probability is calculated
recursively.c(w|h) is a count ofw after in a contexth, and
c(h) is summation of all words’ counts in a context ofh.

thw is a count thatw is estimated to be generated from
the context ofh′，and th is summation ofthw in a context
of h. Discount parameterd and concentration parameterθ
is hyper parameters of HPYLM.

When we calculate unigram probabilityp(w|h) , p(w|h′)
does not exist. To overcome this problem, we use letter
N-gram smoothed by HPYLM as a base measure of word
unigram. This gives word HPYLM reasonable base measure
without preparing word dictionary.

E. Morphological Analysis using blocked Gibbs sampler

NPYLM enables us to calculate N-gram probability with-
out prepared dictionary. Our proposed method analyzes se-
quence of letters by using NPYLM. Blocked Gibbs sampler
and probabilistic dynamic programming enables NPYLM to
chunk given letter sequences without heavy computational
time.

Blocked Gibbs sampler eliminates words included in a
sequence (document) from the language model and sample
new chunking by using language model. After chunking, it
adds the sampled words to the language model and updates
the language model. NPYLM becomes optimized by sam-
pling segmentation repeatedly. Forward filtering-Backward
sampling algorithm is used to segment target sentences in
the unsupervised morphological analysis in [11].

III. EXPERIMENT

We conducted an experiment to evaluate our double ar-
ticulation analyzer, a sticky HDP-HMM for modeling un-
segmented human motion, and unsupervised morphological
analysis method using NPYLM. In this experiment, recorded
high dimensional time series data representing unsegmented

human upper body motions were input into the learning
architecture as learning data samples2.

A. Experimental Conditions

Human upper body motion, which includes a DOF of
36, was recorded using the motion capture system Gypsy
5 Torso (Meta motion). Each joint angle of a human’s upper
body. A participant was required to manipulate three target
objects. When the participant manipulated an object, he/she
was required to exhibit a corresponding unique unit motion.

In these experiments, we used captured human motion data
as a learning data set. We asked a participant to move for 20
seconds while being recorded. The frame rate was 60 Hz.
During the recording session, we asked the participant to
manipulate three types of target objects, a toy, ball, and stick.
The participant was asked to arbitrarily switch target objects,
and the continuous motion was recorded as an unsegmented
motion. The participant was allowed to insert small arbitrary
motions between two specific unit motions. Therefore, the
time series contained the three types of bodily motions
without any explicit segmentation.The dimensionality of the
recorded data was reduced to 6 by using singular value
decomposition[9] .

We set the sticky HDP-HMM parametersα = 0.1,γ =
0.1,andκ = 0.9 as default values. Before the sticky HDP-
HMM learning phase, the Gaussian prior distribution’s mean
value and variance were calculated and set toµ0 = 0, and
Σ0 = dsI , respectively, which are the hyperparameters of
the prior distribution of the mean vectors of each emission
distribution. We set the DOF as 9.∆ = df I for the inverse-
Wishert distribution, which is a prior distribution of the
variance-covariance matrices of the Gaussian distribution.
We set the hyperparameter of emission distributiondf =
0.5× 10−4 by referring to the variance of data in state
space. We iterated Gibbs sampling 10 times in sticky HDP-
HMM. In NPYLM, we used discount parameterd = 0.5
and concentration parameterθ = 0.1. Blocked Gibbs sampler
repeated 200 times.

B. Result

The output sequences corresponding to three data from
sticky HDP-HMM are shown in Fig. 5. This sequence was
given to unsupervised morphological analyzer using NPYLM
as input data set. The output from NPYLM is shown in 6. The
parenthetic subsequences are chunked letters corresponding
to words in documents. The chunked letters correspond to a
unit motion.

Fig .6 shows that (10 4)，(16 4 6 11 6)，(16 17)，(10)，(4
16 4)，(10 4 10 4)，(16)，(17) were extracted as unit motions.
By reviewing the recorded movie, we found that (16 4 6 11
6) , (4 16 4) and (10 4) are corresponding to playing with
a toy (Fig 7)，rolling a ball (Fig. 8) and swinging a stick
(Fig. 9), respectively． (10 4) was a subsequence of (10
4 10 4). Unit motions corresponding to (16 17), (16), (17)
were found to be shorter than 1 second. They are motions

2This experiment uses the same data set as [9]
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Fig. 6. A sample of chunked label sequence obtained by using NPYLM

switching between the main unit motions. This result shows
that our double articulation analyzer could extract three unit
motions corresponding to three objects from unsegmented
motion data.

We compared the computational time of proposed method
with the MDL-based chunking method Taniguchi et al.
used[9]. We prepared larger data sets by duplicating mea-
sured motion data. Fig. 10 shows the relative computational
time compared with the time chunking 3 data sets required.
This shows the increase in computational time in NPYLM is
smaller than that in MDL. MDL approach requires calcula-
tion of description length for each repetition. This increases
computational time when the size of data set increases. On
the other hand, NPYLM does not require such recalculation
requiring big computational cost. Mochihashi [11] reported
that blocked Gibbs sampler reduced computational time
greatly. The same result was obtained in this experiment.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a new double articulation
analyzer using sticky HDP-HMM and NPYLM and evaluate
its effectiveness through a simple experiment. The analyzer
could extract unit motion by using NPYLM without preex-
isting dictionary. It also shown that NPYLM requires less
computational time than MDL-based chunking method[9].

Fig. 7. Holding up a dog-like robot (16 4 6 11 6)

Fig. 8. Rotating a ball (4 16 4)

Fig. 9. Swinging a stick (10 4 10 4)
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Fig. 10. Comparison of computation time of each chunking method

However, the proposed method is not a theoretically
unified model. Sticky HDP-HMM and NPYLM are both
based on nonparametric Bayesian theory, but work sepa-
rately. Ideally, the double articulation analyzer works by
using a language model and a dynamical model (HDP-
HMM) interactively. If a double articulation analyzer uses
the information of language model when it segment unseg-
mented original time series, we can unify the segmentation
process and chunking process into a generative model. This
is our future work. In addition, reducing computational time
of sticky HDP-HMM which requires much computational
time is necessary to apply this method to a large data set.

This method is unsupervised learning method. Therefore,
obtained results fully depend on the dataset of motion data.
In order to extract a unit motion from unsegmented motion
data, the unit motion should be observed several times in
the dataset because the NPYLM uses frequency of words to
estimate probability of words. It’s difficult to analyze how
much data is necessary for proper segmentation. However,
we showed that a big dataset is not necessary for motion
segmentation in our experiment. To analyze our proposed
method from this viewpoint is also our future work.
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