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Abstract: An agent in a multi-agent environment should adapt to the diversities of dynamics that are caused by
changes in the physical properties of the task environment and in social situations concerning how the partner is
shifting his/her behaviors to achieve the task. When the partner’s intention changes in the latter, a collaborator
agent has to notice this from what is observed in the shared-task environment and to explore how to adaptively
collaborate with the partner. A Situation-Sensitive Reinforcement Learning (SSRL) architecture is presented
in this paper. SSRL enables a collaborator agent to implicitly estimate the partner’s goal. The mathematical
basis of the implicit estimates is also addressed. A simple truck-pushing task by a pair of agents is presented as
a testbed example, and the simulation results show that organized collaboration could be achieved by an agent
embedded with our model in adapting to the partner’s intentional strategic changes.

Keywords: Reinforcement learning, multi-agent systems, cooperative systems, modular learning.

1. INTRODUCTION

Cooperation by all participating agents is neces-
sary in many multi-agent tasks: e.g., playing football
and carrying large tables. An agent in cooperative
tasks, has to estimate the other agent’s intention ex-
plicitly or implicitly. Implicit extimates are achieved
by watching how the state variables he/she observes
change. The state variables are usually considered
to be the objectives to be controlled. The learning
process of physical skills to control the target sys-
tem and how to communicate with the partner agent
seem to be closely connected in such cooperative
tasks.

From the viewpoint of computational neuro-
science, Wolpert et al. [10] suggested that MOSAIC,
which is a modular learning architecture represent-
ing part of the human central nervous system (CNS),
which acquires multiple internal models that play
an essential part not only in adapting to the physi-
cal dynamic environment, but also in communicat-
ing with other autonomous agents. At the same
time, Taniguchi et al. described an integrative learn-
ing architecture for spike timing-dependent plastic-
ity (STDP) and the reinforcement learning schemata
model (RLSM) [8], [7]. The learning architecture
enables an autonomous robot to acquire behavioral
concepts and signs representing the situation where
the robot should initiate the behavior. They called

this process “symbol emergence”. The symbolic
system plays a important role in human social com-
munication. However, both Wolpert and Taniguchi
seem to insist that the learning architecture con-
structing an adaptive symbolic system is more im-
portant than a static constructed symbolic system.
However, is a symbolic system is necessary to com-
municate one’s intentions to other agent?

One solution is to communicating one’s inten-
tions to another person is to express one’s intention
directly, e.g. by pointing to the goal and by com-
manding the otherbto act. The method of communi-
cation requires a shared symbolic system as a basic
premise if the symbolic system, which is used in this
communication, is completely shared by the partic-
ipants of the cooperative-task environment. The re-
ceiver of the message can estimate the emitter’s in-
tentions based on externalized signs. This process is
called the “explicit estimation” of the other’s inten-
tion. In contrast, we occasionally undertake collabo-
rative tasks with somebody without saying anything.
Even if a leader says nothing to his followers, they
can often perform the task by estimating the leader’s
intentions or goals based on their subjective motor
outputs and/or sensory inputs that are causally re-
lated to the leader’s intentions. Followers cannot ob-
serve any information except for their own sensory-
motor information. However, they can estimate the



leader’s intentions. To iterate, this processis called
“implicit estimation” of the leader’s intention.

It is important to treat physical-learning and
social-learning processes simultaneously to discuss
implicit estimates of the other’s intention in a col-
laborative task from the viewpoint of computation,
. We assumed that such a distributed learning archi-
tecture would be essential for an autonomous agent
to cope not only with a physically dynamic environ-
ment but also with a socially dynamic environment
that included changes in the other agent’s intentions.

The computational model for implicit estimates
of the other !Gs intention is described in this pa-
per based on a framework of modular reinforce-
ment learning. The computational model is called
situation-sensitive reinforcement learning (SSRL).
The mathematical basis for the implicit estimation
of other’s intention based on the framework of rein-
forcement learning is also provided. Furthermore, a
simple truck-pushing task by a pair of agents is pre-
sented to evaluate the learning architecture.

2. SITUATION-SENSITIVE
REINFORCEMENT LEARNING

ARCHITECTURE

It is important for autonomous agents to accumu-
late the results of adaptation to various environments
to cope with dynamically changing environments.
Acquired concepts, models, and policies should be
stored for similar situations that are expected to oc-
cur in the near future. Not only learning a certain
behavior and/or a certain model, but also the ob-
tained behaviors, policies, and models is essential
to describe such a learning process,. Many mod-
ular learning architectures [3], [1] and hierarchical
learning architectures [5], [4] have been proposed
to describe this learning process. This section in-
troduces such a modular-learning architecture called
the situation-sensitive reinforcement learning archi-
tecture (SSRL). This enables an autonomous agent
to distinguish changes the agent is facing in situa-
tions, and to infer the partner agent’s intentions.

2.1 Discrimination of intentions based on changes
in dynamics

“Intention” in everyday language denotes a num-
ber of meanings. Therefore, a perfect computational
definition of “intention” is impossible. We simply
consider “intention” as a goal the agent is trying to
achieve in this paper. In the framework of reinforce-
ment learning, an agent’s goal is represented by a

Fig. 1 Situation-Sensitive Reinforcement Learning
architecture

reward function. Therefore, an agent who has sev-
eral intentions has several internal goals, i.e. several
internal reward functions, Gm. If a internal reward
function, Gm, is selected, a policy, um, is selected
and modified to maximize the cumulative future in-
ternal reward through interactions with the task en-
vironment.

The collaborative task consists of two agents in
what follows. The system is described as

y = f(x, u1, u
m
2 ) + n, (1)

= f(x, u1, u
m
2 (x)) + n, and (2)

= Fm(x, u1) + n. (3)

Here!$x is a state variable, ui is i-th agent’s mo-
tor output, and n is a noise term. We assumed that
an agent would not be able to directly observe the
other agent’s motor output. In such cases, the en-
vironmental dynamics seem to be eq. ?? to the first
agent. If the second agent changes its policy, the
environmental dynamics for the first agent change.
Therefore, in a physically stationary environment,
the first agent can establish that the second agent has
changed its intention by noticing changes in envi-
ronmental dynamics.

The discussion can be summarized as follows. If
the physical environmental dynamics, f , is fixed,
agents can detect changes in the other agent(s in-
tentions by detecting changes in subjective environ-
mental dynamics, F .

We define “situation” as “how state variable x and
motor output u change observed output y”. In this
case, a change in an agent’s intentions leads to a
change in the subjective situation of the other agent.

Fig. 1 is an overview of SSRL. SSRL has several
state predictors, Fm, representing situations and in-
ternal goals, Gm, representing intentions. Each state



predictor Fm corresponds to each situation.

ej
t = ||yt − F j(xt, ut)||2, (4)

P (j|ēj
t) = exp(− ēj

t

2σ2
)/

p∑
k=1

exp(− ēk
t

2σ2
), and(5)

j∗ = arg min
j

P (j|ēj
t), (6)

where ēj
t is the temporal average of the prediction

error, ej
t , of the j-th state predictor, F j . If averaged

error ēj
t has a normal distribution when the system

dynamics is F j , the posterior probability, P (j|ēj
t),

can be defined based on the Bayesian framework
above under the condition that there is no other in-
formation. If there are no adequate state predictors
in SSRL, the SSRL allocates one more state predic-
tor based on hypothesis-testing theory [6].

This is an intermediate method for the MOSAIC
model [11], [10], which is based on the Basian
framework, and the schema model [6], which is
based on hypothesis-testing theory. SSRL detects
the current situation based on Eq. 6. During this an
adequate state predictor is selected and assimilates
the incoming experiences; SSRL acquires the state
predictors by ridge regression based on the assimi-
lated experiences.

2.2 Reinforcement Learning

Each policy corresponding to a goal is acquired
by using reinforcement learning [2]. SSRL uses
Q-Learning [9] in this paper. This method can
be used to estimate the state-action value function,
Q(s, a), through interactions with the agent’s envi-
ronment. The optimal state-action value function
directly gives the optimal policy. When we define
S as a set of state variables and A as a set of mo-
tor outputs, and we assume the environment consists
of a Markov decision process, the algorithm for Q-
learning is described as

Q ← Q(s, a) + α(r + γV (s′)−Q(s, a)),
V (s′) = max

a′∈A
Q(s′, a′), and (7)

u(s) = argmax
a′∈A

Q(s, a), (8)

where s ∈ S is a state variable, a ∈ A is a motor
output, r(s, a) is a reward, and s′ is a state variable
at the next time step. In these equations, α is the
learning rate and γ is a discount factor. After an
adequate Q is acquired,the agent can utilize an op-
timal policy, u, as in Eq. 8. Boltzmann selection is
employed during the learning phase.

Fig. 2 Internal goal switching module

2.3 Switching Architecture of internal goals

An agent can detect changes in the other agent’s
intentions by distinguishing between situations
he/she faces. However, the goals themselves can-
not be estimated even if switching between several
goals can be detected. Here, we describe a learn-
ing method, which enables an agent to estimate the
other’s intentions passively. The method requires
three assumptions to be made.

A1 Physical environmental dynamics f do not
change.

A2 Every internal goal is equally difficult to
achieve.

A3 The leader agent always selects each optimal
policy for each intention.

The mathematical explanation for these assumptions
will be described in the next section. The rule to
select the internal goals are described as

p(m|j) = exp(Bwjm)/
q∑

i=1

exp(Bwji), (9)

where p(m|j) is the probability that Gm will be se-
lected under situation, F j , and B is the inverse tem-
perature. The network connection, wjm, between
the current situation, F j , and the current internal
goal, Gm, is modified by the sum of the obtained
reward, Rjm

t , during a certain period during the t-th
trial, i.e.,

wjm = νRjm
t + (1− ν)wjm (10)

Here, ν is the learning rate. Eq. 10 shows that con-
nection wjm becomes strong if internal goal Gm is
more easy to accomplish when the situation is F j .
Eq. 9 shows that an internal goal is more likely to be
selected if its network connection is stronger than
the other’s. The abstract figure for the switching
module is shown in Fig. 2. If the learning process for



the switching architecture of internal goals is pre-
ceded and converged, a certain internal goal corre-
sponding to a situation is selected.

3. MATHEMATICAL BASIS FOR
IMPLICIT ESTIMATES OF OTHER’S

INTENTIONS

This section provides the mathematical basis for
the implicit estimates of the other’s intentions in this
paper. The basis for this is simple. First, the Bellman
equation for the i-th (i = 1, 2) agent of a system
involving two agents are described as 1.

V λ
i (x)|uj = max

ui∈Ui

∑
x′

P (x′|x, ui, uj)

×[Gλ(x, x′) + γV λ
i (x′)], (11)

where Gλ is a reward function for the λ-th goal, ui

is the i-th agent’s motor output, and x′ is the x in
the next step. Gλ in this framework is not assumed
to have motor outputs as variables of the function.
The optimal value function for the i-th agent de-
pends on the other agent’s policy, uj . Here, we de-
fine uλ

i as the i-th agent’s policy that maximizes the
j-th agent’s maximized value function.

uλ
i = argmax

ui∈Ui

max
uj∈Uj

∑
x′

P (x′|x, u1, u2)

×[Gλ(x, x′) + γV λ
i (x′)]and (12)

V
λ|ν
i ≡ V λ

i |uν
j
. (13)

The assumptions, A2 and A3, we made in the previ-
ous section can be translated into the following,

A’2 : We assumed the j-th agent would use the
controller, uλ

j , and

A’3 : V
λ|λ
i (x0) = V

ν|ν
i (x0),

where x0 is the initial point of the task. The fol-
lowing relationship can easily be derived from the
definition.

V
λ|λ
i = V

ν|ν
i ≤ V

ν|λ
i . (14)

Therefore, the i-th agent’s internal goal becomes the
same as j-th agent’s goal, if the i-th agent select a re-
ward function that maximizes the value function un-
der the condition that the j-th agent uses controller
uλ

j . When the initial point is not fixed, Vi(x0) is sub-
stituted by the averaged cumulative sum of rewards
the i − th agent obtains, who starts the task around
the initial point, x0. This leads us to the algorithm
eq.10.
1In this section, we have assumed i �= j without making any
remarks.

4. EXPERIMENT

We evaluate SSRL in this section. To fulfill all the
assumptions made in Section 3 completely is dif-
ficult in a realistic task environment. The task de-
scribed in this section roughly satisfies the assump-
tions, A’2 and A’3.

4.1 Conditions

We applied the proposed method to the truck-
pushing task shown in Fig. 3. Two agents
in the task environment, “Leader” and “Fol-
lower”,cooperatively push a truck to various loca-
tions. Both agents can adjust the truck’s velocity and
the angle of the handle. However, a single agent can-
not achieve the task alone because its control force is
limited. In addition, the Leader has all fixed policies
for all sub-goals beforehand, and holds a stake in
deciding the next goal. However, the agents cannot
communicate with each other. Therefore, an agent
cannot “explicitly” estimate the other’s intentions.
The Follower perceives situation F j by using SSRL,
changes its internal goal Gm based on the situation,
and learns how to achieve the collaborative task. The
two agents output the angle of the handle, θL!$θF ,
and the wheel’s rotating speed, ωL!$ωF . Here!$the
final motor output to the truck, θ!$ω, is defined as

θ = Kθ(θL + θF )and (15)

ω = Kω(ωL + ωF ), (16)

where Kθ and Kω are the gain parameters of the
truck. Kθ and Kω were set to 0.5 in this experi-
ment. The Leader’s controller was designed to ap-
proximately satisfy the assumptions in Section 3.
The controller in this experiment was a simple PD
controller. The Follower’s state, s, was defined as
s = [ρ, α]. The state space was digitized into
10× 8 parts. The action space was defined as θF =
{−π/4,−π/8, 0, π/8, π/4} and ωF = {0.0, 3.0}.
As a result of the two agents’ actions, the truck’s
angular velocity, Ω, was observed by the Follower
agent. Ω, θ, and ω have a relationship of

Ω ∝ ω tan θ. (17)

The agents can carry the truck to a certain goal by
cooperatively controlling Ω. The main state vari-
ables are shown in Fig. 4. Internal reward function
Gm is defined as

Gm(x) =

{
5 if ||C −Goalm|| < 1
κ(1− ||C −Goalm||) otherwise,

(18)

where C is the position of the truck, and Goalm is
the position of the m-th goal.



Fig. 3 Simple truck-pushing task by pair of agents

Fig. 4 State variables and parameters in task envi-
ronment

4.2 Experiment 1: implicit estimates of other’s
intentions

Wwe fisrt conducted an experiment in which the
Follower estimated the Leader’s goal, where the
Leader selected one of three sub-goals, and learned
how to achieve the collaborative task (Fig. 5, top).
There were three goals, and the Leader changed its
goals from G1− > G2− > G3 alternately every
1000 trials.

In contrast to simple reinforcement learning, the
Follower agent not only has to learn the policies for
the goals but also the state for predictors the relation-
ship between the current situation and the internal
goal by updating these parameters.

The 1000 trajectories of the truck corresponding
to all 1000 trials in this experiment are shown in
Figs. 6 and 7. Simple Q-learning with explicitly
given internal goals and SSRL are compared. Fig. 6
shows the results obtained from the experiment us-
ing Q-learning, and Fig. 7 shows those from the ex-
periment using SSRL. The task success rate is indi-
cated in each figure. The red curves represent the
trajectories for the team that reached the goal, and
the gray curves represent the trajectories for the team
that did not reach the goal. This shows that sim-
ple Q-learning achieves a single task. However, the
Follower could not coordinate with the Leader agent
after it had changed its goal because it could not dis-
cover the Leader agent’s intentions. SSRL performs

Fig. 5 Top: cooperative action is acquired by Fol-
lower, bottom: plan toward the goal is acquired
by Leader
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Fig. 6 Behaviors of truck at Follower’s learn-
ing stage with single Q-table and internal goal-
switching module without state predictors
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Fig. 7 Behaviors of truck at Follower’s learning
stage with SSRL

Fig. 8 Time course of probabilities where m-th
internal goal is selected



Fig. 9 Time course of probabilities that environ-
ment being faced is the i-th situation

better when the Leader changes its intentions. Fig.9
shows that three predictors were generated that dis-
cover the Leader’s intentions. Furthermore, Fig. 8
shows that appropriate internal goals were selected
inside the Follower agent.

These results show that SSRL enabled the Fol-
lower to implicitly estimate the Leader’s intention.

4.3 Experiment 2: Collaborative task

After the follower had acquired the ability to im-
plicitly estimate the leader’s intentions, the next ex-
periment was carried out. The experimental environ-
ment is shown at the bottom of Fig. 5. The task re-
quired the agents to go through several checkpoints
(sub-goals), and reach the final goal. The Follower
in the next experiment exploited the SSRL acquired
through Experiment 1, and the Leader explored and
planed the path to the final goal. The Leader agent
can chose the next sub-goal out of three check points
that correspond to three goals in Experiment 1, i.e.,
“up”, “upper right”, and “right”, from the current
checkpoint as shown in Fig. 5. There are also two
“cliffs” in this task environment. If the truck en-
ters the cliffs, it can no longer move. The Leader
learned the path to the final goal by using simple
Q-Learning. The reward function for the Leader is
shown in Fig. 10. Two kinds of Follower agents are
compared in this experiment. The first has a single
Q-learning architecture and a perfect internal goal
switch. The second has SSRL.

Fig. 11 shows the results for the experiment using
simple Q-learning. Fig. 12 shows the results for the
experiment using SSRL. Fig. 13 shows the success
rate representing the probability that the team will
finally reach the final goal. The results reveal that
the team whose Follower agent could not discrim-
inate the Leader’s intentions performed worse than
the team whose Follower agent could distinguish

START

-5

-5

0

+5

START

-5

-5

0

+5

Fig. 10 Reward function for Leader agent for plan-
ning path
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Fig. 11 Behaviors of truck at Leader’s learn-
ing stage with single Q-table and internal goal
switching module without Situation Recognizer
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Fig. 12 Behaviors of truck at Leader’s learning
stage with SSRL



Fig. 13 Success rate for cooperative task

the Leader’s intentions. Without such a distributed
memory system like SSRL, the Follower would not
be able to keep up with in the Leader’s intentions.
In addition to disadvantage, the poor performance
of the Follower agent adversely affects the Leader’s
learning process. However, the Follower with SSRL
could estimate the Leader’s intentions and keep up
with the Leader’s plans although there was no ex-
plicit communication between the two agents. How-
ever, the success rate for the collaborative task sat-
urated at about 40%. The reason for this is that
the Follower notices changes in the Leader’s inten-
tions after these changes have sufficiently affected
the state variables. The delay until the Follower be-
comes aware of the changes is sometimes critical,
and the truck occasionally fell into the cliffs. To esti-
mate the other’s intentions without any explicit signs
outside the state variables, the information has to be
embedded in the state variables, which are the ob-
jectives of the team’s control task. Our results sug-
gest that it is not impossible to implicitly estimate
the other’s intentions, but it is important to have a
communication channel whose variables are not re-
lated to the state variables, which are the objectives
of the task.

5. CONCLUSION

We described a framework for implicitly estimat-
ing the other’s intentions based on modular rein-
forcement learning. We applied the framework to
a truck-pushing task by two agents as a concrete ex-
ample. In the experiment, the Follower agent could
perceive changes in the Leader’s intentions and es-
timate his intentions without observing any explicit
signs on any action outputs from the Leader. This
demonstrated that autonomous agents can coopera-
tively achieve a task without any explicit communi-
cation. Self-enclosed autonomous agents can indi-
rectly perceive the other’s changes in intentions from
changes in their surrounding environment. How-

ever, this framework for implicit estimates does not
always work well. If the system does not satisfy the
assumptions made in Section 3, the framework is not
guaranteed to work. Moreover, the Leader’s poli-
cies are fixed when the Follower agent is learning its
policies, predictors, and network connections in our
framework. Therefore, simultaneous multi-agent re-
inforcement learning is not taken into consideration.
We intend to take these into account in future work.
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