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Abstract—A novel integrative learning architecture based on a reinforcement learning schemata
model (RLSM) with a spike timing-dependent plasticity (STDP) network is described. This archi-
tecture models operant conditioning with discriminative stimuli in an autonomous agent engaged in
multiple reinforcement learning tasks. The architecture consists of two constitutional learning archi-
tectures: RLSM and STDP. RLSM is an incremental modular reinforcement learning architecture, and
it makes an autonomous agent acquire several behavioral concepts incrementally through continuous
interactions with its environment and/or caregivers. STDP is a learning rule of neuronal plasticity
found in cerebral cortices and the hippocampus of the human brain. STDP is a temporally asym-
metric learning rule that contrasts with the Hebbian learning rule. We found that STDP enabled an
autonomous robot to associate auditory input with its acquired behaviors and to select reinforcement
learning modules more effectively. Auditory signals interpreted based on the acquired behaviors were
revealed to correspond to ‘signs’ of required behaviors and incoming situations. This integrative
learning architecture was evaluated in the context of on-line modular learning.

Keywords: Reinforcement learning; symbol emergence; spike timing-dependent plasticity; operant
conditioning; modular learning.

1. INTRODUCTION

Can we create a robot that we can teach tricks and their corresponding ‘signs’? What
neural computations are important for operant conditioning with a discriminative
stimulus (SD)? These two questions, although different, need to be addressed to
understand the learning process. The first question is an engineering problem,
and the second question is a problem in cognitive neuroscience and psychology.
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In this paper, our goal is to provide a possible computational model for operant
conditioning with SD by modeling a novel machine learning architecture. The
computational model will enable us to teach autonomous robots tricks incrementally
and provide us with a clear understanding of the learning process in operant
conditioning.

1.1. Operant conditioning with SD

Numerous experiments related to operant conditioning have shown that animals
become able to switch their behaviors based on an incoming SD after some operant
conditioning learning phases. The operant conditioning theory involves four types
of stimuli [1]: an eliciting stimulus, a reinforcing stimulus, a discriminative stimulus
and a neutral stimulus. An eliciting stimulus is a stimulus that evokes a fixed,
sometimes innate, response. A neutral stimulus is a stimulus that has no effect
on an animal’s response. The other two stimuli are more important in operant
conditioning. Reinforcing stimuli applied to an animal after certain actions increase
the probability with which the agent will perform the same actions. An organized
series of actions are called an operant. In addition, an SD can increase the
appearance ratio of an operant acquired under the same conditions that the SD was
provided. It is important that the SD is associated with an operant and not an action.
For example, a dog’s keeper rewards a dog with food when the dog runs into the
keeper’s house under the condition that the keeper toots a trumpet or the dog keeper
gives the dog some other rewards when the dog does tricks under the condition
that the keeper says the trick’s name. In these examples, the sound of the keeper’s
trumpet and the words are considered as the SD, and the food and other rewards are
the reinforcing stimuli. With these points in mind, we classify operant conditioning
tasks into two classes. One is simple operant conditioning without SD and the other
is operant conditioning with SD. The former is characterized simply by rewards
and penalties. This learning process is usually termed reinforcement learning in the
field of machine learning. The learning process involves an animal acquiring an
accepted behavior, e.g., to run into a house or to do a trick, that maximizes rewards
and minimizes penalties. The reinforcement learning procedure of machine learning
has been thoroughly discussed and significant progress has been made in the last
two decades [2–6]. Operant conditioning with SD is where an animal is required
to acquire not one, but several different behaviors. In addition, the animal has to
associate incoming SDs with the acquired behaviors. Once learning is complete,
the animal has to recall and perform the corresponding task and its solution when an
SD is displayed. If the recalled behavior is correct, the animal will obtain adequate
rewards.

1.2. Reinforcement learning and brain science

Simple operant conditioning without SD has been computationally modeled as a
reinforcement learning theory [2, 3]. This learning method enables an agent to
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perform as it maximizes a cumulative future discounted reward based on a Markov
decision process (MDP) model. Computational research involving reinforcement
learning has enabled a better understanding of neuroscience and psychology [7–9].
The computational theory of reinforcement learning helps to reveal how the human
brain operates when we solve reinforcement learning tasks. Research results
suggest that the basal ganglia is involved in reinforcement learning and dopamine
neuron activity encoding of the reward prediction error, δ(t) (refer to (1)) [10–12].
Research has given us good examples that robotic and/or computational models
may possibly help neuroscience research. However, an adequate computational
model, which describes operant conditioning with an SD, has not been proposed
yet. Therefore, a computational model for operant conditioning is needed to enable
better understanding of neuroscience.

1.3. Associative memory and reinforcement learning

Reinforcement learning is a satisfactory computational model for operant condi-
tioning without SD. However, reinforcement learning architectures based on MDP
is unsuitable for the computational model of operant conditioning with an SD. The
reason is that SD is often given as a transient stimulus, e.g. alarm and human voice.
If the state expressions in MDP are adopted, such transient inputs willl be difficult
to treat in the MDP framework. If we define the incoming stimulus as one dimen-
sion of a multi-dimensional state vector, the state value will be the same before
and after an SD passes on in MDP. Therefore, the framework should be extended
to a type of a partially observed Markov decision processes (POMDP) [13] or an
integrative learning architecture with an associative memory architecture and sev-
eral separated reinforcement learning modules, i.e., modular reinforcement learning
architecture [6, 14]. In the current research, we chose integrative learning architec-
ture. The associative memory in this situation has to learn the relationship between
the SD and the incoming task environment. The popular Hebbian rule [15] is not ap-
plicable in this stuation. The reason is that the Hebbian rule assumes that two related
signals temporarily cooccur, but the SD is usually given before the tasks change.
There is not a temporarily coocurance, but a temporal ordinarity. To learn the tem-
poral ordinarity, a temporally asymmetric associative learning rule is required. We
found that spike timing-dependent plasticity (STDP) can be used to learn the ordinal
relationships of incoming SD and to select the next required reinforcement learning
module (see Section 3).

1.4. Emergence of behaviors and signs

Since Sony developed AIBO as a pet robot several years ago [16], many different
pet robots have been developed. Most of them interact with people by using several
preprogrammed behaviors. However, they cannot acquire behaviors incrementally
through the interactions with their owner, which is different from real pets. A lack in
adaptability and limited behaviors have led to their owners becoming bored. Asada



1180 T. Taniguchi and T. Sawaragi

highlighted the importance of emerging intelligent behaviors [17]. Therefore, to
develop adaptive autonomous robots capable of acquiring several behaviors like real
pets is an important issue to maintain lifelong human–machine interactions. Using
our example of a dog, we often teach them tricks, e.g., ‘sit down!’, ‘fetch me the
ball!’ and ‘stand up!’, through interactions with some rewards. Psychologically,
this learning process is based on operant conditioning with an SD. Developing
an algorithm for such a learning process is a challenging problem for engineers.
Sutton proposed options to achieve multiple skills acuisition with reinforcement
learning [18]. Based on this idea, intrinsically motivated learning to enable a robot
to acquire hierarchical collections of skills was proposed [19, 20]. However, the
number of options and the subgoal of each option is fixed in an options framework.
To achieve incremental acquisition of behaviors without an explicit supervised
learning process, an incremental modular reinforcement learning architecture is
needed. Takahashi [21] proposed a modular reinforcement learning system in which
Q-tables corresponding to several environmental dynamics, and not behaviors or
skills, are acquired by a robot. In contrast, Taniguchi [14] proposed a reinforcement
learning schema model (RLSM) as an incremental modular reinforcement learning
architecture that enables a robot to obtain several behaviors incrementally. We
used this learning architecture in this paper. We focused on a learning rule for
neural networks termed STDP, which is a temporally asymmetric learning rule
recently found to occur in the cerebral cortex and the hippocampus [22, 23]. STDP
is believed to be related to associative memory; thus, several statistical analyses
have been performed [24]. However, the possibile functions of STDP are still
under investigation. In particular, what roles STDP plays in an animal’s behavioral
learning process is unclear. Therefore, constructing a learning rule, which includes
STDP, will indicate the advantages of this learning rule in understanding the
problems of neuroscience. In this paper, we developed an integrative learning
architecture that enabled an autonomous robot to perform operant conditioning
with an SD by combining an STDP learning rule and an incremental reinforcement
learning architecture based on an RLSM [14] (Fig. 1).

2. RLSM

In this section, RLSM [14] is explained in detail. A simple reinforcement learning
architecture is insufficient for a robot to learn several behaviors incrementally. If
a robot learns another behavior after it has acquired one, the acquired behavior
will be overwritten by the new one. Therefore, a dynamically distributed memory
architecture is necessary to obtain multiple behaviors in reinforcement learning
tasks.

2.1. Basic concepts

Several modular learning architectures have been proposed. Wolpert et al. proposed
MOSAIC as a model for the cerebellum obtaining a multiple internal model [25].
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Figure 1. RLSM with an STDP network.

Tani et al. proposed RNNPB, which makes robots obtain several behaviors through
a supervised learning phase [26]. Strictly speaking, RNNPB is not a modular
learning architecture, but dynamically manages its memory based on parametric
biases. Jacobs et al. proposed the mixture of experts [27], and this method is widely
used in pattern-matching problems and state-prediction problems. However, these
modular learning methods use gating or switching their modules based on state
prediction errors. Singh extended this idea to reinforcement learning and proposed
compositional Q-learning (CQL) [6]. Modules in this method are selected not on
their state prediction errors, but on their reward prediction errors δ(t). However,
these modular learning architectures, besides RNNPB, did not achieve adequate on-
line incremental modular acquisition.

To achive adequate on-line incremental acquisition of learning modules learn-
ing, Taniguchi et al. proposed a dual-schemata model based on Piaget’s schema
theory [28, 29]. The schema system is described as an autonomous distributed cog-
nitive system in Piaget’s developmental psychology. The schema system explains
human infant development, especially in the sensorimotor period. Taniguchi also
extended that computational schema model to reinforcement learning and proposed
RLSM as Singh extended mixture of experts to CQL [14].

The basic concepts of the Taniguchi’s computational schema model are as follows.
The schema model is characterized by two pairs of processes driven by incoming
experiences. A schema assimilates experiences that are predicted with sufficient
accuracy by its inner prediction function. The experiences accommodate its inner
function and variance predictor. This cyclic process is called an equilibration
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process. However, if all schemata refuse to assimilate a new experience, a new
schema is then created for the situation producing the experience. This process is
called differentiation. Equilibration and differentiation are the basic concepts of the
schemata model. Other approachs to modular learning system are usually based
on Bayes’ rule to select an adequate module [25, 27, 30–32]. However, RLSM
selects the most adequate module based on the hypothesis testing theory. RLSM is
basically characterized by the difference.

2.2. Algorithm

An RLSM is formulated based on Q-learning [4] and has several reinforcement
learning modules termed reinforcement learning schemata. The λ-th schema has
two functions: state-action-value function Qλ and Qλ’s second-order statistics
function Q(2)λ. To calculate the standard deviation of Q-value (σ λ) Q(2)λ is
used as a supplementary function. Temporal difference (TD) learning, including
Q-learning, does not enable errors in the value function to be observed directly, thus
temporal difference errors must be considered. Q(2)λ functions are used to estimate
Qλ’s standard deviation, σ̂ λ. Second-order statistics of a value function are also
considered in Bayesian Q-learning [33]. The TD-error δt and secondary TD-error
δ

(2)
t for each λ-th schema are calculated using:

δλ
t = rt + γV λ(st+1) − Qλ(st , at ) and (1)

δ
(2)λ
t = r2

t + 2γ rtV
λ(st+1) + γ 2Q(2)λ(st+1, a

∗
t+1) − Q(2)λ(st , at ), (2)

where

V λ(st ) = Q(st , a
∗
t ), (3)

a∗
t = arg max

a

Qλ(st , a), (4)

and γ is a discount parameter. Each function is updated using these errors:

Qλ(st , at ) ← Q(st , at ) + αδt (5)

Q(2)λ(st , at ) ← Q(2)λ(st , at ) + αδ
(2)
t (6)

σ̂ λ
t =

√
Q(2)λ(st , at ) − (Qλ(st , at ))2. (7)

By letting δt be divided by the estimated standard deviation σ̂t , we define a
dimensionless number, Rλ

t , as a subjective error. Subjective error Rλ is a normalized
error based on the corresponding λ-th schema:

Rλ
t ≡ |δλ

t /σ̂
λ
t |2 (8)

[Rλ]−τ (t) =
∫ 0

−∞
1

τ
exp

(
s

τ

)
Rλ(t + s) ds (9)

=
∫ ∞

−∞
W−τR

λ(t + s) ds (10)



Incremental acquisition of behaviors and signs 1183

∼ (1 − p)

λ∑

k=0

pkRλ
t−k (11)

∼ (1 − p)Rλ
t + p[Rλ]−τ (t − �t) (12)

Vλ(t) = χc(np[Rλ], np) (13)

np = 1 + p

1 − p
, (14)

where χc(x, n) is a χ2 one-sided cumulative function, Prob(X|X > x), which
is a monotonously decreasing function and has a max value of 1. The averaged
n squared normalized Gaussian probability variables have a χc(nx, n) as a one-
sided cumulative function. The weighted average of a squared normalized Gaussian
with parameter p has a χc(npx, np) approximately. (The approximation is derived
by fitting their first and second moments.) [Rλ]−τ is the temporal weighted average
of the subjective errors. Rλ

t and Rλ(t) are the subjective errors of the λ-th schema
in continuous and discrete time, respectively. Operator [∗]τ is an operater defined
as:

[f ]τ (t) =
∫ ∞

−∞
Wτ (s)f (t + s) ds (15)

=
∫ ∞

−∞
1

τ
sgn

(
s

τ

)
exp

(
− s

τ

)
f (t + s) ds (16)

sgn(x) =
{

1, if x > 0,
0, otherwise

(17)

Wτ = 1

|τ | sgn

(
− s

τ

)
exp

(
s

τ

)
. (18)

Both [∗]τ and sgn are used throughout this paper. The operator [∗]τ represents the
calculated temporally weighted average with a window function, Wτ .

Vλ is the λ-th schema activity. Schema activity quantifies how well fitted the
robot’s facing environment and/or reward function are to the λ-th reinforcement
learning schema. Parameter p represents how long a schema retains a previous
recognition. Equation (12) shows the expression in continuous time where time
constant τ = �t/(1 − p) corresponds to p; �t is the continuous time for one step
in discrete time. Furthermore, a reinforcement learning schema determines whether
to assimilate or reject an experience by referring it to schema activity Vλ. If all
existing schemata reject an incoming experience, differentiation is initiated and a
new schema is then created. This algorithm enables an autonomous robot to notice
qualitative changes in a time series of st , at and rt , and to obtain new behavioral
concepts incrementally. Significance parameter Vα is set, and the probability, P(λ),
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with which the λ-th schema is selected, are defined as:

µ(Hλ) = sgn
(
Vλ(t) − Vα

)
(19)

P(λ) = µ(Hλ)

λ−1∏

k=0

(
1 − µ(Hk)

)
, (20)

where µ(Hλ) is the truth value of hypothesis Hλ, which means the degree to which
the robot’s facing environment corresponds to the λ-th schema. H 0 is a dummy
hypothesis defined to simplify the equation (µ(H 0) = 0). As the above expressions
indicate, the schema model is based on a testing statistical hypothesis theory
mathematically. When the the errors are assumed to have a normal distribution,
a χ2 test is available to determine if the test data correspond to a preexisting
hypothesis, i.e., reinforcement learning schema.

This learning architecture has been evaluated elsewhere [41] and shown to enable
a robot to obtain behaviors incrementally. However, a problem exists with this
kind of modular learning architecture. Window function W−τ in (10) has its center
of gravity at a t of −τ . This means that the schemata are selected based on past
subjective errors. The schema selection delay depends on time constant τ . If the
constant is too small, the RLSM becomes sensitive to incoming noise. Therefore,
a trade-off exists between robustness and quickness. To overcome this trade-off, we
introduced an STDP learning rule to the RLSM, as described in the next section.

3. STDP

An STDP learning rule has been found to operate in the cerebral cortex and
hippocampus [22, 23]. Before this finding, the Hebbian learning rule [15] was
considered to play the main role in associative learning. What is a the important
difference between the STDP rule and the Hebbian rule? The STDP rule is a
temporally asymmetric rule, whereas the Hebbian rule is a temporally symmetric
rule (Fig. 2). The functions that STDP possess have been studied by many
researchers [34–37]. However, the functions relating to an agent’s behavior and
its acquisition of behaviors are still unclear.

Figure 2. Difference between the asymmetric STDP learning rule and the symmetric Hebbian
learning rule.
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3.1. STDP learning rule

Various studies on computational STDP learning rules were conducted after neuro-
biological experiments found the asymmetric learning rule [38, 39]. However, such
experiments could not clarify the exact mathematical formula of an STDP learning
rule. Therefore, many different expressions of STDP rules have been proposed and
discussed [24]. The most common STDP rule is described as:

�w =
∑

ti∈TI ,to∈TO

WSTDP(w, to − ti) (21)

WSTDP(w, �t) =
{

S+(w)

τ+ exp(−|�t |/τ+) if t > 0,

−S−(w)

τ− exp(−|�t |/τ−) otherwise

= S+(w)Wτ+ − S−(w)W−τ−, (22)

where w is the synaptic weight between the pre and post neuron, �w is the change
in the synaptic weight, TO is a set of time points when the post neuron fires, and TI is
a set of time points when the pre neuron fires. W(w, �t) is an asymmetric function
with respect to �t , as shown in Fig. 2. τ+ and τ− are the time constants, and S+
and S− are the learning gains in the STDP. Generally, gain parameters S+ and S−
depend on the w. However, we only treated the case when the gain parameters were
independent of the w in this paper. Song et al. made the same assumption [39].

However, a simple learning rule, as shown in (21), is obviously insufficient. If or-
derly input–output spikes were given to an STDP synaptic connection without other
additional learning rules, the w would diverge. Therefore, a hard boundary [39],
which restricts the w between a minimum and maximum value, or a soft bound-
ary [23], which includes an additional multiplicative rule to the additive STDP rule,
should be designed. We introduced a multiplicative decay term in proportion to
the w:

�w =
∑

i

−Sdecayw(ti). (23)

Sdecay is the gain parameter of the decay term. By using the operator [∗]τ , the total
modified STDP rule can be transformed into a simple form like a dynamical system:

ẇ = S+I [O]−τ+ − S−O[I ]−τ− − SdecaywI, (24)

where I and O are input and output functions, respectively (see Appendix A). Each
function is defined as:

I (t) =
∑

ti∈TI (T )

δ(t − ti) (25)

O(t) =
∑

to∈TO(T )

δ(t − to), (26)

where TI (T ) and TO(T ) are sets of time points when the pre neuron and the post
neuron fires, respectively, until time T . Dirac’s δ(t) represents a spike.
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3.2. What does STDP encode to synaptic weight?

RLSM selects the reinforcement learning schema, i.e., the Q-table, based on the
Vλ(t) defined in (13). Vλ(t) is originally from [Rλ]−τ (t). However, as mentioned,
the window function W−τ in (10) has its center of gravity at a t of −τ . MOSAIC
[25, 31] also has the same time delay, and RNNPB [26] and the mixture of experts
[27, 32] also has similar characteristics. To reduce this time delay, τ should be
small. However, the modular selection and organization would become unstable if
the τ were too small. Therefore, τ causes a trade-off between the time delay of
the modular selection and the stability in an on-line modular organization. If an
off-line learning rule were adopted, τ does not always make modular organization
worse.

We estimated the future weighted averaged subjective error [R]τ (t). This error
cannot usually be calculated because it requires future information about R.
We introduce an STDP neuronal network to RLSM, as shown in Fig. 3. The
post neurons indicated in Fig. 3 correspond to schemata that fire spikes coding
subjective errors. For this paper, we assumed an input neuron fires when the
sound characteristics of each neuron come in. We obtained the estimated value
by averaging [R]τ observed after a certain pre-neuron fired. If the pre-neuron fires
at t :

[̂R]τ+ = E
[[R]τ (ti)|ti ∈ TI

]
(27)

= E

[∫ T

−∞
Wτ+(s)R(ti + s) ds

∣∣∣ti ∈ TI

]
(28)

∼ E

[∫ T

−∞
(Wτ+(s) − W−τ−(s))R(ti + s) ds

∣∣∣ti ∈ TI

]
+ [R]−τ (t). (29)

Figure 3. STDP neuronal network connected to reinforcement learning schemata firing spikes that
encode subjective errors.
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The first term in (29) represents the estimated difference between [R]τ and [R]−τ .
By transforming the first term, we obtain:

∼
∫ T

−∞
∫ T

−∞ I (t)(Wτ+(s − t) + W−τ−(s − t))R(s) ds dt

#(TI (T ))
(30)

=
∫ T

−∞ R[I ]−τ+ − I [R]−τ− dt
∫ T

−∞ I dt
. (31)

By differentiating this formula with respect to T , we obtain:

ẇ = 1

#(TI (T ))
(R[I ]−τ+ − I [R]−τ− − wI) (32)

= S+I [R]−τ+ − S−R[I ]−τ− − SdecaywI, (33)

where S(T ) ≡ S+(T ) = S−(T )− = Sdecay(T ) = 1/#(TI (T )) (see Appendix B).
However, the STDP gain parameters explicitly depend on T . Therefore, we modify
the estimation method in (27) to a weighted average. The parameters in such cases
become constant values (see Appendix C). This shows that the STDP learning rule
can encode differences between estimated future averaged subjective errors and past
averaged subjective errors to the synaptic weight by considering R as output spikes
of the post-neuron.

3.3. Integrative learning architecture

Previous research investigated hierarchical learning architectures. In such hierarchi-
cal learning architectures, the higher-level layer can learn lower learners’ activities
and lower-level learners can learn practical dynamics or tasks [32, 40, 41]. How-
ever, most researchers have assumed incoming signs are not a transient stimulus, but
a sustained stimulus. Takamuku [42] proposed a hierarchical learning architecture,
which has a Hebbian network for the learners in the higer-level layer and Q-tables
for the learners in the lower-level layer. However, they also assumed that the higher-
level layer’s input is a sustained stimulus. To treat transient input, an STDP rule is
better than a Hebbian rule. Therefore, we integrated an STDP neuronal network and
an RLSM to model operant conditioning with SD.

We replaced the post neurons in the STDP network by a reinforcement schemata
firing Rλ as output spikes (Fig. 3). We assumed that several different sound cues
were provided as SD. The reason for this is as mentioned in the previous subsection;
the STDP network automatically encodes information from the estimated [Rλ]τ+
to the synaptic weight, wλ

i , between the i-th input neuron and the λ-th schema.
This integrative learning architecture has an STDP learning rule and an RLSM
learning rule running. Under these conditions, the architecture can make sense out
of incoming stimuli related to changes in schemata activities. Window function W+
has its center of gravity at a t of τ . Therefore, the RLSM becomes able to select
an appropriate schema by referring to the incoming stimuli interpreted as a ‘sign’
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of the change that will happen in the future. In terms of operant conditioning, the
incoming sound will be referred to as an SD [1].

To modulate the schema activity, Vλ, by using the information extracted from
the incoming ‘sign’, the inner states of the schemata need to be defined. The λ-th
schema’s inner state, 	λ, changes as:

	̇λ =
∑

i

(wλ
i − 	λ) sgn(wλ

i − wλ
dz)Ii(t) − 1

τ
	λ, (34)

where wλ
dz denotes the dead zone of the synaptic weight. wλ

dz is defined as wλ
dz =

k

√
2 var[Rλ]Sλ

i . k is a constant, and Sλ
i is the gain parameter of the connection

between the i-th input neuron and the λ-th schema in the STDP learning rule. If
incoming spikes and the firing subjective errors are not temporally correlated, w will
distribute around 0. The first term reflects the synaptic weight, wλ

i , of the nearest
input spike to the λ-th schema’s inner state. The second term denotes the decay
term of the inner state. The inner state is designed to reflect the w of the latest
recieved input spike. By using this inner state, the RLSM can select an appropriate
schema more effectively without wasting any time. The modulated schema activity
is defined as:

Vλ
(τ+) = χc

(
np [̂Rλ]τ+, np

)
(35)

∼ χc
(
np(	λ + [Rλ]−τ−), np

)
. (36)

4. EVALUATION

First, we evaluated the RLSM by using a two-dimentional (2-D) simulation for a
Khepera mobile robot [43].

4.1. Conditions

The simulation space and a Khepera’s sensory-motor system are illustrated in Fig. 4.
We used Webots, produced by Cyberbotics, to simulate Khepera’s dynamics. The
square simulation space was enclosed by walls 2 m long and 10 cm high. A light
source was located 10 cm above the center of the space. The Khepera motor system
has two wheels and their rotational velocities can be set independently for each time
step. Khepera’s sensory system is comprised of an infrared sensor, a light sensor
and a GPS. Q-learning usually requires a discrete state space. Therefore, we divided
Khepera’s x, y coordinates and its angle of direction, obtained from the GPS, into
six parts and defined 216 (=6 × 6 × 6) states. The action space was also made
discrete by defining five representative motor outputs: forward, back, right, left and
stop. Forward and back move the robot about 30 cm per step, and right and left
rotate it about 60◦ per step. The infrared sensor (ds) and the light sensor (ls) were
limited to between 0 and 1. They were used only to calculate the rewards. To detect
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Figure 4. (Left) Simulation space, and (right) Khepera’s sensory-motor system.

Figure 5. Reward functions.

incoming sounds, a microphone sensor was also provided and was connected to
input neurons, which are modeled in Fig. 3.

We prepared three reward functions: r1 = ds, r2 = 1.5ls and r3 = 1.8vforward,
where 0 � vforward � 1 is the value given when Khepera advances. These reward
functions indicate the situation when the robot should face a wall, gaze at a light,
and run around, respectively (Fig. 5). The parameters for reinforcement learning
were set to an α of 0.2 and a γ of 0.8. The parameters for the schemata model
were set to a p of 0.999 and a Vα of 0.0001. The parameter for the STDP was set
to a k of 0.75. We previously investigated whether the RLSM enabled Khepera to
obtain and recall several behavioral concepts, i.e., reinforcement learning schemata
while it was interacting with a specific environment. The reward functions in this
environment were altered. Each trial consisted of 200 steps Khepera’s action at each
step was determined by Boltzmann selection. The inverse temperature in each trial
was set to a β of 0 during the first 100 steps, to a β of 1 during the next 50 steps
and to a β of 3 (almost greedy) during the final 50 steps. The reward functions
were set to r1 for (0 < trial � 750), r2 for (750 < trial � 1500) and r3 for
(1500 < trial � 2250). Subsequently, each reward function was used alternately
every 250 trials.

As shown in Fig. 6, each schema activity, Vλ, had a successful transition. Also,
the schema, initially only one, differentiated into three separate schemata. Three
behavioral concepts corresponding to the three reward functions were eventually
organized. Each schema was selected, as shown in Fig. 6.
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Figure 6. (Top) Schema differentiation process and transition of schema activities, and (bottom)
selected reinforcement learning schema.

However, an average time of 2000 steps had already passed when RLSM recalled
an appropriate schema when switching reward functions. To overcome this time
delay, Khepera must be able to identify sounds when the corresponding reward
functions are selected as ‘signs’ for upcoming situations. By using the STDP
learning rule, Khepera can learn the relationship between sounds and when the next
schema should be activated, and should be able to recall an appropriate schema
effectively. We prepared 36 (6 × 6) different sounds in the simulation space to
evaluate the STDP learning rule. After the three schemata were acquired, we
continued to alternate the reward functions for each of the 25 trials. Sounds 1, 2
and 3 were rung when r1, r2 and r3 were selected, respectively. In addition, sounds
4–36 were rung randomly as noise. Under this noisy condition, an autonomous
robot had to determine meaningful sounds related to its organized schemata.

4.2. Results

As shown in Fig. 7, synaptic weights encoded the relationship between the sounds
and schema 1. The results in Fig. 7 show that the synaptic weights around the
third and fourth sound, which have no relationship to schema 1, converged to zero.
However, the synaptic weight around the second sound was large because schema 1
started to output big subjective errors when its facing reward function was switched
from r1 to r2. The synaptic weight around the first sound obtained a large negative
value because schema 1 reduced its subjective errors when its reward function was
switched from r3 to r1. This is in contrast to the second sound.

By exploiting these obtained synaptic weights, Khepera became able to interpret
incoming ‘signs’ required to select the next schema. As shown in Fig. 8, the
required time delays when Khepera switched its schema corresponding to external
rewards decreased gradually as it learned and exploitied incoming ‘signs’. Figure 9
shows the acquired synaptic weight on the network. To facilitate visualization,
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Figure 7. Transition of synaptic weight between input neurons and schema 1.

Figure 8. Course of time delays in switching schemata.

the 36 input neurons were placed in 2-D maps, as shown in Fig. 9. Each map
shows the acquired synaptic weight between all input neurons and each schema.
Sounds 1, 2 and 3 correspond to (1, 2), (2, 4) and (3, 6), respectively. Both negative
and positive relationships between the changes in the situations and descriminative
stimuli are clearly acquired by the STDP network. In addition, other synaptic
weights corresponding to the other random sounds converged to alomost zero. This
means the network can distinguish meaningful sounds, which relate to changes in
situations, from other meaningless noise.

In an additional experiment, we continued to alternate the reward functions every
200 steps. The interval was set to be shorter than the previous task. Without an
STDP neuronal network, RLSM took about 2000 more steps than the previous
experiment. However, the integrative learning eventually caught up with the
frequent environmental changes. This means that the robot can select adequate
behavior at every moment (Fig. 10). Figure 11 shows the difference between the
weighted average of obtained reward with a simple RLSM learning architecture and
with that obtained using integrative learning architecture. This clearly shows that
STDP helps RLSM in terms of reward.
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Figure 9. Obtained synaptic weight on the STDP network.

Figure 10. STDP makes RLSM switch adequately even in more frequently changing environment.

5. CONCLUSIONS

We described a novel integrative learning architecture that consists of an RLSM
and an STDP neuronal network. This network achieved operant conditioning with
SD. Using the RLSM, an autonomous agent could obtain several learning modules,
called reinforcement learning schemata, without any explicit indication except for
sensor vectors, motor vectors and rewards. After obtaining several schemata, the
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Figure 11. Difference in obtained rewards of two learning schemes.

agent could obtain the relationships between incoming sounds and the agent’s
obtained schemata, and exploit them as ‘signs’ when using STDP. Owing to the
associative memory, the agent could perform better (Fig. 11). However, qualitative
and not quantitative progress is important here. It is important that neither an RLSM
learning rule nor an STDP learning rule is classified into supervised-learning rules.
Therefore, an integrative learning rule is classified into self-organizational learning
rules. The incoming sounds had no meaning before the agent determined their
meanings. This learning process is closely related to ‘symbol emergence’ [17].
To overcome a symbol grounding problem [44], which is a historical problem in
AI, symbol emergence is believed to be a promising approach [45]. Takamuku
has shown that a robot can acquire several lexicons based on the dynamics of a
robot facing objects and through the robot interacting with objects [42]. In contrast,
this paper describes a learning architecture that enables a robot to generate several
interpretants of behaviors. How we overcome the symbol grounding problem by
investigating symbol emergence is one of the important next challenges.

Human beings can learn not only one behavior based on reinforcement learning,
but also numerous behaviors and their corresponding SD or the behavior’s name.
The human brain may bring several different cortices into line to solve this complex
problem. Basal ganglia is charged with reinforcement learning [8, 9]. However,
a reinforcement learning framework is insufficient to achieve operant conditioning
with SD. Our results suggest that cortices, which have STDP as their learning rule,
other than basal ganglia also take part in the learning process. We achieved operant
conditioning with SD in silico by combining a reinforcement learning scheme and
an STDP artificial neuronal network. The STDP learning rule is found in the
cerebral cortices and the hippocampus of the human brain [23]. This suggests the
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possibility that cerebral cortices and/or the hippocampus take part in the learning
process of operant conditioning with SD.
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APPENDIX A

In this section, we derive on-line STDP learning rule in continuous time. An STDP
learning rule is often expressed as an off-line process as (21) [23, 24, 39, 46].
However, this learning rule is complicated when we apply STDP learning dynamics
in an on-line learning agent because the timings of all input spikes and output
spikes must be stored. When we apply the STDP learning dynamics to on-line
experiments, a learning rule should be expressed as a dynamical system by using
differential equations. Therefore, we transform (21) to obtain differential equations,
i.e. an on-line STDP learning rule.

First, the total amount of change in synaptic weight w until time T can be
rewritten by using Dirac’s delta function δ(t).

w =
∑

ti∈TI (T ),to∈TO(T )

W STDP(to − ti) (A1)

=
∑

ti∈TI (T )

∑

to∈TO(T )

[∫ T

−∞

∫ T

−∞
δ(s − to)δ(t − ti)W

STDP(s − t) ds dt

]
(A2)

=
∫ T

−∞

∫ T

−∞

∑

to∈TO(T )

δ(s − to)
∑

ti∈TI (T )

δ(t − ti)W
STDP(s − t) ds dt (A3)

=
∫ T

−∞

∫ T

−∞
O(s)W STDP(s − t)I (t) ds dt. (A4)

In the surface integral, the area for integral is divided into LTP area SLTP =
{(s, t)|s > t} and LTD area SLTD = {(s, t)|s � t}:

=
∫ ∫

SLTP

S+
τ+

exp

(
t − s

τ+

)
O(s)I (t) ds dt

+
∫ ∫

SLTD

−S−
τ−

exp

(
s − t

τ−

)
O(s)I (t) ds dt (A5)

= S+
∫ T

−∞
O(s)

∫ s

−∞
1

τ+
exp

(
t − s

τ+

)
I (t) dt ds

− S−
∫ T

−∞
I (t)

∫ t

−∞
1

τ−
exp

(
s − t

τ−

)
O(s) ds dt. (A6)
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The inner integral of the first term can be transformed into:
∫ s

−∞
1

τ+
exp

(
t − s

τ+

)
I (t) dt (A7)

=
∫ ∞

−∞
1

τ+
sgn

(
s − t

τ+

)
exp

(
t − s

τ+

)
I (t) dt (A8)

=
∫ ∞

−∞
1

τ+
sgn

(
q

−τ+

)
exp

( −q

−τ+

)
I (s + q) dq (A9)

= [I ]−τ+(s), (A10)

by using operator [∗]τ . Here, q = t−s. After the same transformation of the second
term, we obtain:

=
∫ T

−∞
S+O(t)[I ]−τ (t) − S−I (t)[O]−τ−(t) dt. (A11)

If we differentiate the equation by T , we finally obtain:

ẇ = S+O[I ]−τ+ − S−I [O]−τ− . (A12)

APPENDIX B

In this section, an STDP learning rule is derived from the expression of the expected
output spike value after input spikes from a certain neuron. The transformation from
(30) to (31) can be performed by using similar procedures outlined in Appendix A.
Equation (31) is transformed to (32) as follows.

dw

dT
= d

dT

{∫ T

−∞ O[I ]−τ+ − I [O]−τ− dt
∫ T

−∞ I dt

}
(B1)

= (O[I ]−τ+ − I [O]−τ−)(
∫ T

−∞ I dt) − (
∫ T

−∞ O[I ]−τ+ − I [O]−τ+ dt)I

(
∫ T

−∞ I dt)2

(B2)

= O[I ]−τ+ − I [O]−τ−∫ T

−∞ I dt

− 1
∫ T

−∞ I dt

∫ T

−∞ −O[I ]−τ+ + I [O]−τ− dt
∫ T

−∞ I dt
I (B3)

= 1

#(TI (T ))
(O[I ]−τ+ − I [O]−τ− − wI). (B4)

This expression equals (32).
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APPENDIX C

An STDP learning rule whose gain term is constant can be derived by differentiating
the weighted average of the difference between future and past output spikes.

The weighted average is defined as:

w =
∫ T

−∞(1/ν) exp(−(1/ν)
∫ T

t
I (s) ds)(O(t)[I ]−τ+(t) − I (t)[O]−τ−(t)) dt

∫ T

−∞(1/ν) exp(−(1/ν)
∫ T

t
I (s) ds)I (t) dt

(C1)

=
(

exp(−(1/ν)I (T ))

∫ T

−∞
(1/ν) exp((1/ν)I (t)

× (O(t)[I ]−τ+(t) − I (t)[O]−τ−(t)) dt

)

×
(

exp(−(1/ν)I (T ))

∫ T

−∞
1

ν
exp((1/ν)I (t))I (t) dt

)−1

(C2)

=
∫ T

−∞(1/ν) exp((1/ν)I (t)(O(t)[I ]−τ+(t) − I (t)[O]−τ−(t)) dt
∫ T

−∞(1/ν) exp((1/ν)I (t))I (t) dt
, (C3)

where ν is a forgeting time constant. Term (1/ν) exp(−(1/ν)
∫ T

t
I (s) ds) means

that the effect of the input spike becomes less as the input spike gets older.

I (t) ≡
∫ t

0
I (s) ds (C4)

lim
t→−∞ I (t) = −∞. (C5)

The boundary condition assumes that incoming spikes have been continuously
incoming. We represent the denominator of (C3) by p and the numerator by q.
By differentiating the formula with T , we obtain

dw

dT
= q ′p − p′q

p2
(C6)

= q ′

p
− p′

p

q

p
(C7)

= 1

p
(q ′ − wp′) (C8)

= ((1/ν) exp((1/ν)I (T ))(O[I ]−τ+ − I [O]−τ−) − w(1/ν) exp((1/ν)I (T ))I )

exp((1/ν)I (T )) − exp((1/ν)I (−∞))

(C9)

= (1/ν)(O[I ]−τ+ − I [O]−τ− − wI). (C10)

This equals an STDP learning rule whose gain parameters are constant.
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