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Abstract— In this paper, we propose a novel semiotic pre-
diction method for driving behavior based on double artic-
ulation structure. It has been reported that predicting driv-
ing behavior from its multivariate time series behavior data
by using machine learning methods, e.g., hybrid dynamical
system, hidden Markov model and Gaussian mixture model,
is difficult because a driver’s behavior is affected by various
contextual information. To overcome this problem, we assume
that contextual information has a double articulation structure
and develop a novel semiotic prediction method by extending
nonparametric Bayesian unsupervised morphological analyzer.
Effectiveness of our prediction method was evaluated using
synthetic data and real driving data. In these experiments,
the proposed method achieved long-term prediction 2-6 times
longer than some conventional methods.

I. INTRODUCTION

A. Prediction of driving data

To assist driving and to provide additional benefit to
drivers, an intelligent vehicle’s capability for recognizing
and predicting driver’s intention is important. It enables
advanced driving assistance systems e.g. information service
to assist intended driving maneuver, risk evaluation of current
driving scene and maneuvers. Many kinds of approaches
have been taken for modeling driving behaviors. Especially,
statistical time series modeling techniques, such as hidden
Markov model (HMM), hybrid dynamical system (HDS),
and Gaussian mixture model (GMM), have been frequently
employed. Previous studies, however, indicate it is difficult to
predict concrete values of time series driving data including
acceleration throttle, brake, and steering angle. Takano et al.
[1] used HMM for modeling driving behavior and reported
that it is difficult to use their prediction method with the
degree of accuracy for automated driving system. HDS
including Piece Wise Auto Regressive eXogenous model
(PWARX) [2], Stochastic Switched Auto Regressive eXoge-
nous [3] and Auto Regressive Hidden Markov Model [4]
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were also used to predict driving behaviors. HDS has several
discrete states corresponding to elemental linear dynamical
systems. Although HDS seems to be more complicated than
HMM and GMM, HDS does not always outperform them1.
Angkitirakul et al. [5] showed that GMM and PWARX have
almost same prediction capability.

These previous studies imply that predicting concrete
value of driving behavior is difficult because a driver is
affected by contextual information and his/her intention.
Modeling and predicting such various hidden information are
important to achieve long-term prediction of driving behav-
ior. In HMM or GMM, the context or the intention is usually
modeled as their hidden states. Prediction of hidden states
itself is important in many situations. Even if an intelligent
vehicle cannot predict concrete value of driving behavior, it
can support its driver by predicting contextual information,
i.e. hidden states of these probabilistic models. Therefore, we
discuss about prediction of a sequence of hidden states in this
paper. However, HMM and GMM have Markovian property
in their hidden state transition. These cannot model long-
term context. Oliver and Pentland[6] enumerated drivers’
typical behaviors and prepared left-to-right HMM model for
recognition and prediction of drivers’ behavior. However, this
kind of approach requires preparing drivers’ model and it
is difficult to enumerate elemental human drivers’ behavior
completely. Therefore, an unsupervised learning approach
is required to model and predict longer-term contextual
information. To achieve this, we focus on double articulation
structure in driving behaviors. From that point of view,
We extends an unsupervised morphological analysis method
proposed in natural language processing field and derives a
novel semiotic prediction algorithm of driving behavior.

B. Prediction based on Double Articulation

Taniguchi and Nagasaka [7] proposed a double articulation
analyzer for extracting long-term human motion chunks by
connecting several short-term natural segments of human
motion. The method is based on analyzing hidden double
articulation structure, which is well known in Semiotics. Fig.
1 is a conceptual figure of double articulation. Our spoken
language and some various semiotic data have a double
articulation structure. Most theories of speech recognition

1HDS is fundamentally a type of HMM. The difference between HDS
and HMM is only in a type of output distributions, i.e., HDS has linear
dynamics and HMM has Gaussian distributions. However, if HDS assume
Gaussian distribution as a prior distribution of input data, and if HMM adopt
dynamic features, i.e., including first derivation of feature data, into their
feature input data, the two models become equivalent.
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Fig. 1. On-line estimation of hidden state using double articulation
structure.

have the following assumptions. First, a spoken auditory
signal is segmented into phonemes (“a”, “b”, “c” etc. in
Fig. 1). Second, the phonemes are chunked into words
(“abc”, “e”, “db” etc. in Fig. 1). In most cases, we assume
that phonemes do not have any meanings, but words have
certain meanings. A transition model between the words is
represented as language model. In this paper, we presume
that human driving behavior also has double articulation
structure. We assume that unsegmented driving behavior
is segmented into many short-term behaviors based on its
linearity or its locality of distribution in its observed state
space. The short-term behavior is called segment in this paper
(see Fig. 1). The segments are chunked into a chunk which
corresponds to a word in spoken language (see Fig. 1). The
prediction method proposed by Okuda et al. [2] showed the
effectiveness of incorporating the symbolized context longer
than Markov transition, which was acquired through mostly-
unsupervised procedure. Their prediction is a straightforward
one depending on a given context with production rules.
They also implied strongly the existence of a hierarchical
structure in driving behavior.

Assuming that natural driving behavior has double artic-
ulation structure, a prediction method of the behavior can
be derived. In most previous studies, direct prediction of
time series behavior proved to be difficult. In this paper,
the time series prediction problem is changed contrastively
into semiotic prediction. We, human, recognize our environ-
ment abstractly or symbolically (cf. Fig. 1). Therefore, we
developed a semiotic predictor which anticipates the next
hidden state which is corresponding to a linear model in
HDS. We extend double articulation analyzer [7] consisting
of sticky Hierarchical Dirichlet Process HMM (HDP-HMM)
and Nested Pitman-Yor Language Model (NPYLM), and
then propose the novel semiotic predictor that can exploit
contextual information in the next section.

II. ALGORITHM

A. Overview

An overview of our proposed semiotic predictor based on
double articulation analyzer[7] is given in this subsection.

First, large amounts of high-dimensional time series data
in a vehicle are observed . Sticky HDP-HMM[8] is used for
segmentation and modeling the target driving behavior. By
using sticky HDP-HMM, the analyzer can estimate segments
and obtain sequences of hidden state labels (letters) without
fixing the number of hidden states. A sequence of the letters
that corresponds to observed time series is called a sentence.
After obtaining the sentence, it is chunked into a sequence
of words. A word corresponds to a sequence of letters. Then,
after obtaining several sentences from observed behavior
data, an unsupervised morphological analysis method based
on NPYLM is applied to them. NPYLM, proposed by
Mochihashi et al. [9], is a nonparametric Bayesian language
model is comprised of two hierarchical Pitman-Yor (HPY)
process. One is a language model and the other is a word
model. The language model is an n-gram model of words
and word model is an n-gram model of letters. The language
model is named NPYLM because an HPY word model is
nested by an HPY language model (HPYLM). The language
model enables unsupervised morphological analysis, in other
words, unsupervised chunking. By using sticky HDP-HMM
and NPYLM collaboratively, double articulation analyzer
can extract chunks from continuous time series data. By
extending this method, semiotic predictor will be obtained.

B. Segmentation by Sticky HDP-HMM

The observed multivariate time series data is converted
to a sentence using sticky HDP-HMM and we obtain a set
of sentences. Sticky HDP-HMM is an extension of infinite
HMM (iHMM). Infinite hidden Markov model, proposed by
Beal et al. [10], is a first nonparametric Bayesian statistical
model which can be substituted for a conventional HMM. A
potentially infinite number of hidden states are assumed with
iHMM. Through its inference process, iHMM can flexibly
estimate the number of hidden states depending on given
training data. However, an adequate generative model and
an efficient inference algorithm were not shown in [10]. Teh
et al. [11] extends hierarchical Dirichlet process mixture into
hierarchical Dirichlet process-HMM (HDP-HMM), which
is an adequate generative model for iHMM. Fox et al.
[8] proposed sticky HDP-HMM with a self-transition bias.
This model is an extension of HDP-HMM. By biasing the
self-transition probability, sticky HDP-HMM can reduce the
frequency of transition among hidden states. This model is
more effectively used to model and segment a continuous
real-world data stream, e.g., speaker diarization and speech
recognition.

Fox et al. [8] also describes a numerical computation
algorithm using blocked Gibbs sampler. Straight-forward
application of forward filtering-backward sampling algorithm
for HMM[12] to iHMM is not feasible because it is im-
possible to accumulate forward messages for an infinite
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number of hidden states. Therefore, halting stick breaking
process (SBP) [13] and truncating the number of hidden
states are unavoidable. Blocked Gibbs sampler, proposed
in [8] by adopting weak-limit approximation, accelerates
the inference sampling process in HDP-HMM. Practically,
the approximation is not so problematic for the purpose of
analyzing real-world time series data. Therefore, blocked
Gibbs sampler is employed in Taniguchi and Nagasaka [7].

C. Chunking by Unsupervised Morphological Analyzer us-
ing Nested Pitman-Yor Language Model

By an unsupervised morphological analyzer, we can ex-
tract word set (dictionary) included in the set of sentences.
To chunk sequential letters into several words, the double
articulation analyzer[7] employed unsupervised morphologi-
cal analysis methods using nonparametric Bayesian language
models [9], [14]. In the analysis of real-world time series data
based on double articulation, chunks are usually unknown
in contrast with that a set of words is usually known in
spoken language recognition. Therefore, the analyzer has to
deal with unknown words. Where, the words are sequences
of letters, and the letters correspond to hidden states in sticky
HDP-HMM. Unsupervised morphological analysis does not
assume preexisting dictionary. Mochihashi et al. [9] proposed
an unsupervised morphological analysis method based on
Nested Pitman-Yor language model (NPYLM). It consists of
letter n-gram in addition to word n-gram model. The both of
them use Pitman-Yor process to smooth generative probabil-
ity of letters and words. NPYLM and probabilistic dynamic
programming were employed for chunking sentences written
in natural language.

HPYLM is an n-gram language model using HPY process.
Pitman-Yor process is a stochastic process whose base mea-
sure is itself Pitman-Yor process, which is a generalization
of Dirichlet process.

In HPYLM, probability of word w after a context h =
wt−n+1 . . .wt−1 is calculated as

p(w|h) = c(w|h)−d · thw

θ + c(h)
+

θ +d · th
θ + c(h)

p(w|h′), (1)

where, h′ is a context whose order is one less than h, i.e.,
h′ = wt−n+1 . . .wt−1. Therefore, p(w|h′) represents a prior
probability of w after h, and their probability is calculated
recursively. c(w|h) is a count of w after in a context h, and
c(h) is summation of all words’ counts in a context of h. A
context is a sequence of words which are observed before a
target word. thw is a count that w is estimated to be generated
from the context of h′, and th is summation of thw in a context
of h. Discount parameter d and concentration parameter θ
are hyper parameters of HPYLM (see [14]). Any n-gram
probability can be calculated using this equation recursively,
except in the case of p(w|h) is unigram probability. In this
case, p(w|h′) does not exist, and most of previous studies
employed some heuristics based on preexisting dictionary
to calculate the word unigram. To overcome this problem,
NPYLM calculate a base measure of word unigram using
letter n-gram smoothed by letter HPYLM. Thus, NPYLM

enables calculation of word n-gram probability without pre-
existing dictionary, and the word model gives reasonable base
measure without the dictionary. In addition, blocked Gibbs
sampler and probabilistic dynamic programming enables
NPYLM to chunk given letter sequences without heavy
computational time[9].

D. Unsupervised Morphological Analysis for Incomplete
Sentence

As shown in Fig. 1, a sentence given to a semiotic
predictor is an incomplete sentence. When an unsupervised
morphological analyzer tries to parse a given incomplete
sentence including probably incomplete word on its tail such
as “nicetomeety”, it requires an appropriate probability to the
incomplete word. For example, in the case of “nicetomeety”,
its hidden original sentence is “nice to meet you”. Thus the
unsupervised morphological analyzer has to give appropriate
probability to the possible final incomplete word “y”, “ty”,
“ety” or the other suffix of the unsegmented sentence. Possi-
bly, incomplete words have not been registered in an obtained
language model, i.e., sampled word set. The probability
to the incomplete word is obtained by marginalizing over
infinite possible words that include the incomplete word as
a prefix. Here, we define a symbol @ representing prefix
relation between two strings. w1 @ w2 means w1 is a prefix
of w2, e.g., “adb” @ “abdef” and “24” @ “243”. The n-gram
probability of incomplete word u is

p(u|h) = ∑
∀wAu

p(w|h) (2)

by marginalizing the probability of infinite number of pos-
sible words based on NPYLM. The set of possible words
includes infinite number of unobserved words.

The infinite summation of right side of equation (2) is
computable owing to the nonparametric Bayesian character-
istics of NPYLM. By using equation (1), we obtain

∑
∀wAu

p(w|h) =
∑∀wAu{c(w|h)−d · thw}

θ + c(h)

+
θ +d · th
θ + c(h) ∑

∀wAu
p(w|h′). (3)

The first term of right side is summation over observed
words who have u as a prefix of itself. The operation of
the summation requires obviously finite computational time.
The summation in the second term is the same form of left
side. Therefore, p(u|h) can be calculated by applying the
equation (3) recursively.

Also in the case of considering the probability incomplete
words, base measure G0, 0-gram probability, is required
when the length of context h reaches 0. In NPYLM, G0 is
given by its word model. Here, we have to be careful about
the difference between incomplete word u = (l1, l2, . . . , lm)
and complete word w = (l1, l2, . . . , lm). An incomplete word
u does not have EOW which is a special letter representing
the end of the word. w = (l1, l2, . . . , lm) is obtained by adding
EOW to the end of u = (l1, l2, . . . , lm). Therefore, if EOW is
described explicitly, the w becomes w = (l1, l2, . . . , lm, lm+1 =
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EOW ). As a result, the probability for incomplete word can
also be computable by using similar marginalization, i.e.,

G0(u) = ∑
∀wAu

p(w) (4)

= p(u) ∑
∀wAu

p(w−u|h = u) (5)

= p(u), (6)

where w − u is a substring obtained by deleting prefix u
from w. This means the incomplete word probability can be
calculated easily by using word model of HPYLM. The cal-
culation process is completely same as the one for complete
words except for EOW . Now, unsupervised morphological
analyzer can parse incomplete sentence and it can be applied
to incoming time series data.

E. Semiotic Prediction for Time Series Data

Various multimodal sensor data of intelligent vehicle is
observed while a driver drives the vehicle. However, the
observed data is still a part of complete driving data, and
then, the sequence of hidden states is considered as an
incomplete sentence from the viewpoint of double articu-
lation. Therefore, an unsupervised morphological analyzer
for incomplete sentence is applied to the estimated sequence
of hidden states. After obtaining chunked sentence and an
incomplete last word, the proposed semiotic predictor gives
MAP estimation for the last word and subsequent words.
If the observed data has double articulation structure clearly,
this method is expected to predict the transition of the hidden
states more properly than conventional Markov model.

III. EXPERIMENT 1: SYNTHETIC DATA

The proposed algorithm assumes target time series data
to have double articulation structure. To evaluate prediction
performance on such a data, the proposed semiotic predictor
was applied to a synthetic symbolic data.

A. Conditions

The semiotic predictor assumed that the data set consists
of a number of sentences, and that a number of words and
letters (states) are unknown. To generate a synthetic data
with double articulation structure, we trained a generative
language model in which a word model is trained with a
document data obtained from a web site and a word transition
probability is generated by stick breaking process. Finally, as
a synthetic data set, 100 artificial sentences which include 50
words in total were generated by using the language model.

Leave-one-out procedure was employed to test prediction
performance of the predictor. One sentence was removed
from the data set as a test data, and the other sentences were
used as training data for NPYLM. The test data was modified
into an incomplete sentence by elimination of a last part of
the sentence. The semiotic predictor predicts the subsequent
erased letters from the incomplete sentence. We compared
the proposed method, NPYLM with Prediction, with Letter
Markov Model which predicts the next state based on the
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Fig. 2. Averaged length the semiotic predictor could predict
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Fig. 3. A histogram of length the semiotic predictor could predict

present states2 and Simple NPYLM which does not care the
incompleteness of target sentence.

B. Result

Fig. 2 shows the averaged length each model can predict
the subsequent letters i.e., it shows how many subsequent
letters each method could estimate correctly. This shows
that the NPYLM with Prediction outperforms the other
methods. Fig. 3 shows a histogram of correctly predicted
length. In contrast to the predicted length of the Letter
Markov Model which decays exponentially with the predic-
tion length, NPYLM with Prediction achieves much longer
prediction of letter sequence so many times. This result owes
to the context information and obtained knowledge of words
acquired from the data set in unsupervised way.

IV. EXPERIMENT 2: DRIVING DATA

We applied the proposed method to a real-world driving
data and evaluated the predictability of driving data based
on double articulation structure.

A. Conditions

In this experiment, a driver drove a car through two types
of courses. Fig. 4 shows the example view from a driver. The

2Of course, sticky HDP-HMM assumes that hidden states transit from
one to another based on this Markov model.
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Fig. 4. An example of a view from driver’s seat

�

1st course

2nd course

Start/Goal

(1st -5th track)
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Fig. 5. Abstract figures of the two driving courses in the experiment

abstract figures of the two courses are shown in Fig. 5. At
first, the car stopped at a parking space. The driver started
driving into one of the courses. After driving the course,
the car returned to the original position and stopped in every
trial. The driver drives each course for five times. Finally, we
collected 10 time series data of driving behavior; five tracks
for each course in Fig. 5. . In each track, some unpredictable
disturbances were observed, e.g., pedestrians walked across
a road, traffic light turned into red, and there was a leading
vehicle or not.

Driving behavior data is consisted of velocity of the
car, steering angle, brake pressure, and accelerator position.
By adding two dynamic features, temporal difference of
velocity and steering angle, to the four time series data,
we obtained the six dimensional time series data as the
driving behavior data. By applying sticky HDP-HMM to
the obtained data, multivariate sensory time series data was
encoded into a sequence of segments representing hidden
state labels of sticky HDP-HMM. Then, three prediction
methods are evaluated using the sentences.

B. Result

First, the unsupervised double articulation analyzer seg-
mented and chunked the sequence of driving through the
course. The relationship between positions on the courses
and estimated segments (represented by colors) and chunks
(represented by gray bar) are shown in Fig. 63. As a result,
it is observed that similar behaviors on the course are often
encoded into the same sequence of segments (for example,
see lower left corner and lower right corner in track06).
Next, the prediction performance of the proposed method

3The position was estimated from encoder’s record. Therefore, the
trajectories are deviated from the true position.

Fig. 6. Top view of estimated segments and chunks (top) in the 1st track
and (bottom) in the 6th track
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Fig. 7. Averaged length the semiotic predictor could predict

was evaluated. The experimental procedure is same as the
experiment 1. Fig. 7 shows the average length of the pre-
dicted sequence of segments by each method. Fig. 8 shows
that histogram of the predicted length. These figures show
the NPYLM with Prediction outperform the Markov model
and the Simple NPYLM which does not take care about in-
completeness of a hidden sentence. The relationship between
the number of erased segments from the tail of the original
sentence and average predictable length is also shown in Fig.
9. It shows that our proposed semiotic predictor, the NPYLM
with Prediction, can predict a longer sequence from any
breaking points than the other two methods. However, the
difference between the performance of the proposed method
and the baseline methods was smaller than synthetic data.
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Fig. 9. Relation between prediction point of test data and averaged
predictable length

In the real-world condition, the obtained letter sequences
might contain recognition errors. Because the proposed semi-
otic predictor has the cascade structure of sticky HDP-HMM
for segmentation and NPYLM for chunking, segmentation
errors contaminate the subsequent process, unsupervised
morphological analyzer. There are still several possibilities
that could reduce performance of our proposed method, e.g.,
the sparseness of training data set, and ambiguousness of
double articulation structure in driving data. To overcome
these problems, an unsupervised learning architecture should
be improved to segment and chunk simultaneously.

V. CONCLUSIONS AND FUTURE WORKS

We proposed a novel semiotic prediction method for
driving behavior based on double articulation structure. To
construct the predictor, the unsupervised morphological an-
alyzer proposed by Mochihashi et al. [9] is extended to deal
with incomplete sentence. The extension enables an analyzer
to parse online incoming time series data which potentially
has double articulation structure. The proposed method was
applied to a synthetic data set, and our method outperformed
the conventional Markov model and Simple NPYLM which
did not care about incompleteness of the observed sentence.
We also applied the proposed method to a real driving
data set measured by commercially available vehicle. Our
proposed method outperformed the baseline methods.

As we mentioned in the first section, many previous

studies about predicting driving behavior used HMM, HDS
or the other switching model. Most of them assume Markov
transition of the hidden states. However, our result shows that
driving data have double articulation structure and that using
this structure improves long-term prediction performance.
This result means statistical time series modeling techniques
for driving behavior should take hierarchical structure like
double articulation into consideration. An HMM is not
enough to model driving behaviors. To apply this method
to more natural daily driving behaviors and to evaluate our
method are future work. To develop integrated theoretical
method for simultaneous optimization of segmentation and
chunking which has a proper total generative model is also
our future work.
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